Environmental Product Declaration

Description of products, manufacturer name and production location.

ADMINISTRATIVE INFORMATION

International Certified Environmental Product Declaration

Declared Product:	This Environmental Product Declaration (EPD) covers resinous flooring products produced by Declared unit: 1 m2 of covered and protected flooring surface for a period of 60 years.
Declaration Owner:	Manufacturers info
Program Operator:	Program operators information (Developer of EPD)
Product Category Rule:	ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services and PCR for Resinous Floor Coatings.
3 ,	PCR Program Operator: NSF International
	PCR review was conducted by: Thomas P. Gloria, Ph. D., Bill Stough, Jack Geibig.
	This declaration was independently verified in accordance with ISO 14025:2006.
Independent LCA	Independent verification of the declaration, according to ISO 14025:2006
Reviewer and EPD	Internal □ ; External □ X
Verifier:	Third Party Verifier
	Geoffrey Guest, Certified 3rd Party Verifier under the Labeling 4
Date of Issue:	27 October 2022
Period of Validity:	5 years; valid until 28 October 2027
EPD Number:	c18bf431-c032-442c-9ced-7fcda23f116e

TABLE OF CONTENTS -Company Description......3 Description Of Product And Scope4 Ready Mix Concrete Design Summary......6 Cut-Off Criteria......21 Data Sources And Data Quality Assessment _______21 Electricity 21 Fuel Required For Machinery......21 Waste Generation 21 Recovered Energy......22 Module A1 Material Losses _______22 A4 Product Transport Requirements22 B Product Use Phase 22 Consistency 35 Representativeness 35 Environmental Indicators And Inventory Metrics......36 EN Standards......44 Other References......44

COMPANY DESCRIPTION -

STUDY GOAL .

The intended application of this life cycle assessment (LCA) is to comply with the procedures for creating a Type III environmental product declaration (EPD) and publish the EPD for public review on the website,

This level of study is in accordance with EPD Product Category Rule (PCR) for Resinous flooring published by NSF International, entitled 'Product Category Rule for Environmental Product declarations PCR for Resinous Floor Coatings'; International Standards Organization (ISO) 14025:2006 Environmental labels and declarations, Type III environmental declarations-Principles and procedures; ISO 14044:2006 Environmental management, Life cycle assessment-Requirements and guidelines; and ISO 14040:2006 Environmental management, Life cycle assessment-Principles and framework. The performance of this study and its subsequent publishing is in alignment with the business-to-business (B2B) communication requirements for the environmental assessment of building products. The study does not intend to support comparative assertions and is intended to be disclosed to the public.

This project report was commissioned to differentiate from their competition for the following reasons: generate an advantage for the organization; offer customers information to help them make informed product decisions; improve the environmental performance of by continuously measuring, controlling and reducing the environmental impacts of their products; help project facilitators working on Leadership in Energy and Environmental Design (LEED) projects achieve their credit goal; and to strengthen Products Corp's license to operate in the community. The intended audience for this LCA report is employees, their suppliers, project specifiers of their products, architects, and engineers. The EPD report is also available for policy makers, government officials interested in sustainability, academic professors, and LCA professionals. This LCA report does not include product comparisons from other facilities.

Resinous flooring products are often replaced before they technically fail; therefore, the PCR states the need to define these products by the estimated market service life (MSL) and the estimated technical service life (TSL). An additional consideration is that the products can be installed in a wide range of projects ranging from light commercial to industrial; therefore, the industrial scenario is a conservative estimate. The following are the defined MSL and TSL: 1). Thin-Mil- 5 year MSL, 5 year

TSL 2). Self-Leveling or Broadcast Slurry- 10 year MSL, 15 year TSL mortar/Monolithic/Terrazzo- 20 year MSL, 30 year TSL NSF International (2018).

DESCRIPTION OF PRODUCT AND SCOPE -

Three (3) types of floor coatings are covered in this EPD: Epoxy, electrostatic, urethane, and moisture mitigation. Each coating type provides benefits to a commercial project. For example, epoxy systems are specially formulated to protect concrete in harsh conditions, provide an aesthetically pleasing surface, and improve safety for pedestrian traffic. More importantly, epoxy coatings can give flooring the enduring strength it needs to last for years. Electrostatic coatings by provide two polar benefits. Electro CD is conducive to a spark-free work environment, and SD is electrostatic discharge for ESD-sensitive environments. Electrostatic floor coatings are used to protect the integrity of the flooring system and prevent hazards in the workplace. Conductive or non-conductive coatings can be used in pharmaceutical manufacturing plants, munitions and fine particle production plants, laser and optical facilities, hospitals and healthcare centers, electronics manufacturing, computer data centers, and server rooms. Next, polyurethane floor coatings perform well in commercial and industrial settings, delivering layers of protection over a flooring system while keeping it attractive and elegant. And lastly, VaporControl Primers are fluid-applied, epoxy moisture mitigation systems ideal for use under most non-breathing flooring surfaces, including epoxies, urethanes, rubber, adhesives, vinyl tiles, and more. The Vapor Control 1P exceeds the Standard Practice for Two-Component Resin Based Membrane-Forming Moisture Mitigation Systems for Use Under Resilient Floor Coverings, designated ASTM F3010 - 13. It is designed for vapor suppression on above- and below-grade concrete and is placed on the negative side of the concrete substrate (between the concrete slab and the surfacing system).

The materials covered in this EPD do not contain substances of very high concern. The manufacturer has published a complete material ingredient inventory for the products via the HPD Collaborative. CAS numbers have not been published as part of this EPD; ingredients are listed by their common name or by the unit process used.

To determine the proper market and technical lifetimes, the PCR classifies the product by if it is a thin-mil, self-leveling or broadcast slurry, or mortar / monolithic mortar/terrazzo. Thin-Mil is a resinrich coating system typically comprised of a primer, body coat(s), and topcoat installed less than 40 mils. Self-leveling or broadcast slurries are a high-build coating system using the addition of fillers and broadcast aggregates (quartz, flake, silica sand) installed in multiple layers to build thickness, typically from 40 to 180 mils. Mortars, monolithic mortars, and terrazzo are composite materials of marble, silica sand, granite, glass, or other suitable aggregates in a binder matrix of Portland cement mortar, epoxy, polyester resin, or vinyl ester resin. They are typically installed to build thicknesses greater than 180 mils.

Program Operator

Since resinous flooring products may be replaced before they technically fail, the reference service life of the products, as dictated by the PCR, is both an estimated market service life (MSL) and an estimated technical service life (TSL). The values used for both MSL and TSL are in the chart below. The number of replacements needed was calculated by dividing the building service Life (60 years) by the service life (MSL or TSL) and then subtracting the initial application.

Table 1: The MSL and TSL of each product covered in this EPD based on the product's classifiation.

1	Product Classification	Environment	Market Service Life (MSL)	Technical Service Life
	Thin-Mil/ Self- Leveling	Commercial	10 years	15 years
,	Self Leveling	Commercial	20 years	30 years
	Thin-Mil	Commercial	10 years	15 years
'	Thin-Mil	Commercial	10 years	15 years
	Thin-Mil	Commercial	10 years	15 years
	Thin-Mil	Commercial	10 years	15 years
	Mortar	Commercial	30 years	60 years
Products Names	Mortar	Industrial	20 years	30 years
	Mortar	Industrial	20 years	30 years
	Broadcast Slurry	Commercial	20 years	30 years
	Thin-Mil	Commercial	10 years	15 years
	Thin-Mil	Commercial	10 years	15 years
	Broadcast Slurry	Commercial	20 years	30 years
	Thin-Mil	Commercial	10 years	15 years
	Thin-Mil	Commercial	10 years	15 years
	Thin-Mil	Commercial	10 years	15 years

Expected lifetimes are based on the PCR given different application settings (commercial or industrial). For example, resinous floor coatings designed specifically for industrial settings rather than commercial environments shall have a lower estimated and technical service life. On the other hand, if the product type is applied indiscriminately between industrial and commercial settings, it

shall default to conservative industrial service lifetime values. The table below outlines the primary market for each product.

Table 2: Number of repaints for each product in this EPD based on its application setting.

1	Repaints- MSL	Repaints-TSL
Décor-Flor	5	3
Posi-Tred O	2	1
Posi-Tred SL	5	3
Posi-Tred CR	5	3
VaporControl 1P	5	3
Vapor Control FC	5	3
Terracolor	1	0
Cheminert K	2	1
Cheminert HD	2	1
Cove Base Gel	2	1
Electro Flor ESD	5	3
Electro Flor CD	5	3
ElastaFlake RFS	2	1
Quik-Glaze	5	3
Aero Flor	5	3
HPT	5	3

This LCA assumes the impacts from products manufactured in accordance with the standards outlined in this report. This LCA is a cradle-to-grave study.

READY MIX CONCRETE DESIGN SUMMARY -

The following tables provide a list of resinous flooring products considered in this EPD along with key performance parameters.

Thin-MilTable 3: **Declared products with Thin-Mil considered in this environmental product declaration.**

Prod #	Unique name/ID	Short description	Product type	Unit	Densi ty, dry kg/U nit	Densi ty, wet kg/U nit	Bio- carbon conten t, kgC/F U dry basis	prod uctGr oup	Thick ness(mil)
1	Décor- Flor (MSL)	Decor-Flor is a two component, 100% solids, epoxy resin that can be applied as a Primer, Coating, High-Build, Slurry or Mortar in most composite floors.	Resinous flooring	m2	0.82	8.18E -01	0.00	Thin- Mil	10.00
3	Posi-Tred SL (MSL)	Posi-Tred SL is a high solids two component pigmented epoxy body coat	Resinous flooring	m2	1.37	1.37E+ 00	0.00	Thin- Mil	10.00
4	Posi-Tred CR (MSL)	Posi-Tred CR is a chemical, heat and skid resistant novolac epoxy coating for application over primed concrete or as a grout coat and topcoat for other systems.	Resinous flooring	m2	1.01	1.01E+ 00	0.00	Thin- Mil	7.00
5	VaporCon trol 1P (MSL)	VaporControl 1p is a uniquely modified fluid-applied epoxy moisture mitigation system.	Resinous flooring	m2	1.30	1.30E +00	0.00	Thin- Mil	16.00
6	Vapor Control FC (MSL)	Vapor Control FC is a uniquely modified fluid-applied epoxy moisture mitigation system with a faster cure time and shorter recoat window.	Resinous flooring	m2	1.56	1.56E +00	0.00	Thin- Mil	16.00
11	Electro Flor ESD (MSL)	Electro Flor ESD is a fluid applied, water based, monolithic flooring system, It is electrically active within resistance range of one million (1E6) to one billion (1E9) ohms, as tested in accordance with ESD	Resinous flooring	m2	0.73	7.27E -01	0.00	Thin- Mil	10.00

		Association Standard							
		7.1.							
12	Electro Flor CD (MSL)	Electro Flor CD is a fluid applied, water based, monolithic flooring system. It is electrically active within resistance range of Conductivity is within range of 250,000 (250 E4) to one million (1E6) ohms, as tested in accordance with ESD Association Standard 7.1.	Resinous flooring	m2	0.74	7.37E -01	0.00	Thin- Mil	10.00
14	Quik- Glaze (MSL)	Quik-Glaze is a state of the art, high solids, Low Odor, and UV stable aliphatic polyaspartic topcoat.	Resinous flooring	m2	0.68	6.77E -01	0.00	Thin- Mil	8.00
15	Aero Flor (MSL)	Aero-Flor 100 is an aliphatic polyester urethane formula, which is ultraviolet light stable, and provides high chemical, abrasion, and stain resistance.	Resinous flooring	m2	0.23	2.32E -01	0.00	Thin- Mil	4.00
16	HPT (MSL)	HPT is a uniquely versatile High-Performance Polyurethane topcoat using the latest technology of polyurethane resin systems.	Resinous flooring	m2	0.08	8.08E -02	0.00	Thin- Mil	3.00
17	Décor- Flor (TSL)	Decor-Flor is a two component, 100% solids, epoxy resin that can be applied as a Primer, Coating, High-Build, Slurry or Mortar in most composite floors.	Resinous flooring	m2	0.82	8.18E -01	0.00	Thin- Mil	10.00
19	Posi-Tred SL (TSL)	Posi-Tred SL is a high solids two component pigmented epoxy body coat	Resinous flooring	m2	1.37	1.37E+ 00	0.00	Thin- Mil	10.00
20	Posi-Tred CR (TSL)	Posi-Tred CR is a chemical, heat and skid resistant novolac	Resinous flooring	m2	1.01	1.01E+ 00	0.00	Thin- Mil	7.00

21	VaporCon	epoxy coating for application over primed concrete or as a grout coat and topcoat for other Dex-O-Tex systems. VaporControl 1p is a	Resinous	m2	1.30	1.30E	0.00	Thin-	16.00
	trol 1P (TSL)	uniquely modified fluid-applied epoxy moisture mitigation system.	flooring			+00		Mil	
22	Vapor Control FC (TSL)	Vapor Control FC is a uniquely modified fluid-applied epoxy moisture mitigation system with a faster cure time and shorter recoat window.	Resinous flooring	m2	1.56	1.56E +00	0.00	Thin- Mil	16.00
27	Electro Flor ESD (TSL)	Electro Flor ESD is a fluid applied, water based, monolithic flooring system, It is electrically active within resistance range of one million (1E6) to one billion (1E9) ohms, as tested in accordance with ESD Association Standard 7.1.	Resinous flooring	m2	0.73	7.27E -01	0.00	Thin- Mil	10.00
28	Electro Flor CD (TSL)	Electro Flor CD is a fluid applied, water based, monolithic flooring system. It is electrically active within resistance range of Conductivity is within range of 250,000 (250 E4) to one million (1E6) ohms, as tested in accordance with ESD Association Standard 7.1.	Resinous flooring	m2	0.74	7.37E -01	0.00	Thin- Mil	10.00
30	Quik- Glaze (TSL)	Quik-Glaze is a state of the art, high solids, Low Odor, and UV stable aliphatic polyaspartic topcoat.	Resinous flooring	m2	0.68	6.77E -01	0.00	Thin- Mil	8.00
31	Aero Flor (TSL)	Aero-Flor 100 is an aliphatic polyester urethane formula, which is ultraviolet	Resinous flooring	m2	0.23	2.32E -01	0.00	Thin- Mil	4.00

		light stable, and provides high chemical, abrasion, and stain resistance.							
32	HPT (TSL)	HPT is a uniquely versatile High- Performance Polyurethane topcoat using the latest technology of polyurethane resin systems.	Resinous flooring	m2	0.08	8.08E -02	0.00	Thin- Mil	3.00

Self Leveling

 ${\sf Table\ 4:}\ \textbf{Declared}\ \textbf{products\ with\ Self\ Leveling\ considered\ in\ this\ environmental\ product\ declaration.}$

Prod #	Unique name/I D	Short description	Product type	Unit	Densi ty, dry kg/U nit	Densi ty, wet kg/U nit	Bio- carbon conten t, kgC/F U dry basis	prod uctGr oup	Thick ness(mil)
2	Posi- Tred O	Posi-Tred O is a 100% solids two component,	Resinous flooring	m2	0.85	8.50E -01	0.00	Self Level	10.00
	(MSL)	state of the art.	rtooning			-01		ing	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pigmented epoxy						9	
		coating.							
18	Posi-	Posi-Tred O is a 100%	Resinous	m2	0.85	8.50E	0.00	Self	10.00
	Tred O	solids two component,	flooring			-01		Level	
	(TSL)	state of the art,						ing	
		pigmented epoxy							
		coating.							

Mortar

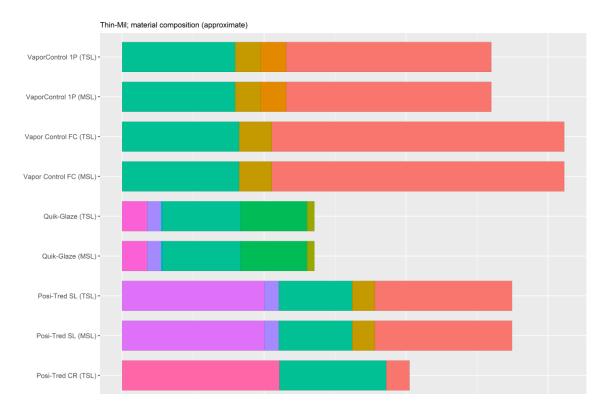
Table 5: Declared products with Mortar considered in this environmental product declaration.

Prod #	Unique name/I D	Short description	Product type	Unit	Densi ty, dry kg/U nit	Densi ty, wet kg/U nit	Bio- carbon conten t, kgC/F U dry basis	prod uctGr oup	Thick ness(mil)
7	Terracol	Terracolor is a thin-	Resinous	m2	33.74	3.37E	0.00	Morta	182
	or (MSL)	section, trowel applied,	flooring			+01		r	
		decorative flooring							
		system, designed to							
		produce a seamless							
		floor and cove base.							

8	Chemine	Cheminert K is a	Resinous	m2	27.35	2.74E	0.00	Morta	182
	rt K	troweled seamless	flooring		_7.55	+01	0.00	r	102
	(MSL)	epoxy industrial flooring	rtooring			101		'	
	(IVISE)	system comprised of a							
		specially formulated							
		two-component epoxy							
		resin, specialty							
		engineered aggregates,							
-		and epoxy top coat							
9	Chemine	Cheminert HD	Resinous	m2	9.21	9.21E	0.00	Morta	182
	rt HD	Cheminert HD is a	flooring			+00		r	
	(MSL)	troweled slurry epoxy							
		industrial flooring							
		system comprised of a							
		specially formulated							
		two-component epoxy							
		resin, specialty							
		engineered aggregates,							
		and epoxy top coat.							
23	Terracol	Terracolor is a thin-	Resinous	m2	33.74	3.37E	0.00	Morta	182
	or (TSL)	section, trowel applied,	flooring			+01		r	
		decorative flooring							
		system, designed to							
		produce a seamless							
		floor and cove base.							
24	Chemine	Cheminert K is a	Resinous	m2	27.35	2.74E	0.00	Morta	182
	rt K (TSL)	troweled seamless	flooring			+01		r	
		epoxy industrial flooring							
		system comprised of a							
		specially formulated							
		two-component epoxy							
		resin, specialty							
		engineered aggregates,							
		and epoxy top coat							
25	Chemine	Cheminert HD	Resinous	m2	9.21	9.21E	0.00	Morta	182
	rt HD	Cheminert HD is a	flooring			+00		r	
	(TSL)	troweled slurry epoxy							
		industrial flooring							
		system comprised of a							
		specially formulated							
		two-component epoxy							
		resin, specialty							
		engineered aggregates,							
		and epoxy top coat.							
		1 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					L		

Broadcast Slurry

Table 6: Declared products with Broadcast Slurry considered in this environmental product declaration.


Prod #	Unique name/I D	Short description	Product type	Unit	Densi ty, dry kg/U nit	Densi ty, wet kg/U nit	Bio- carbon conten t, kgC/F U dry basis	prod uctGr oup	Thick ness(mil)
10	Cove Base Gel (MSL)	Cove Base Gel is a three-component kit with a 2-part sag resistant thixotropic epoxy gel, which is designed to be mixed with a separate aggregate. Cove Base Gel is designed as a resin binder for vertical mortar applications. When mixed with selected aggregates, its thixotropic viscosity produces a mortar compound suitable to install cove bases, wainscots and other vertical applications	Resinous flooring	m2	8.25	8.25E +00	0.00	Broa dcast Slurry	Varie s
13	ElastaFla ke RFS (MSL)	ElastaFlake RFS is a fluid applied composite flooring system including a primer, elastomeric polyurethane cushion coat, decorative color chips, and high performance stain resistant Quik-Glaze polyaspartic top coats.	Resinous flooring	m2	4.32	4.32E +00	0.00	Broa dcast Slurry	80.00
26	Cove Base Gel (TSL)	Cove Base Gel is a three-component kit with a 2-part sag resistant thixotropic epoxy gel, which is designed to be mixed with a separate aggregate. Cove Base Gel is designed as a resin binder for vertical mortar applications. When mixed with	Resinous flooring	m2	8.25	8.25E +00	0.00	Broa dcast Slurry	Varie s

		selected aggregates, its thixotropic viscosity produces a mortar compound suitable to install cove bases, wainscots and other vertical applications							
29	ElastaFla ke RFS (TSL)	ElastaFlake RFS is a fluid applied composite flooring system including a primer, elastomeric polyurethane cushion coat, decorative color chips, and high performance stain resistant Quik-Glaze polyaspartic top coats.	Resinous flooring	m2	4.32	4.32E +00	0.00	Broa dcast Slurry	80.00

RESINOUS FLOORING DESIGN COMPOSITION

The following figures provide mass breakdown (kg per functional unit) of the material composition of each resinous flooring design considered.

Thin-Mil

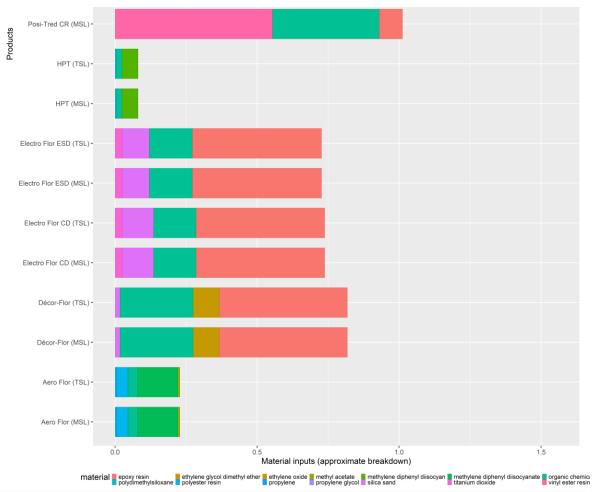


Figure 1: Material composition - Thin-Mil per 1 m2 of covered and protected flooring surface for a period of 60 years.

Self-Leveling

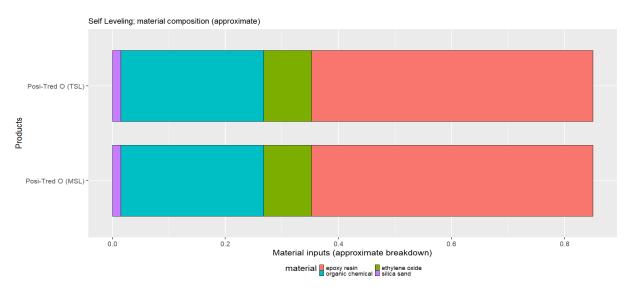


Figure 2: Material composition - Self Leveling per 1 m2 of covered and protected flooring surface for a period of 60 years.

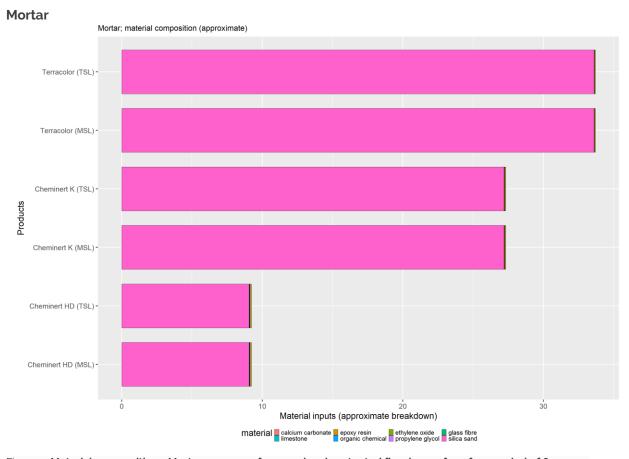


Figure 3: Material composition - Mortar per 1 m2 of covered and protected flooring surface for a period of 60 years.

Broadcast Slurry

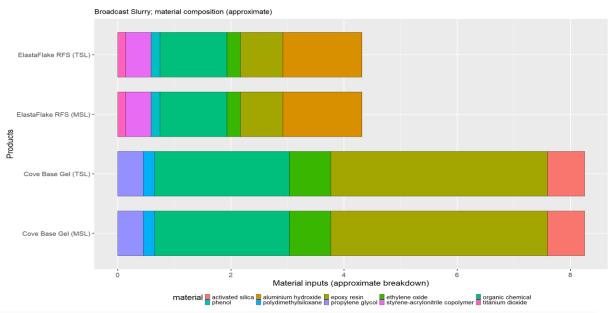


Figure 4: Material composition - Broadcast Slurry per 1 m2 of covered and protected flooring surface for a period of 60 years.

A1 RAW MATERIAL RECYCLED CONTENT AND MATERIAL LOSSES -

The following table provides a list of the raw material inputs (module A1) across all products considered, their recyclability content and assumed material losses.

Table 7: Module A1 raw material inputs, the recyclability content and assumed material losses (dry basis)

			post.industrial.	post.consumer.	material.
product.name	mix.category	primary.content	content	content	losses
epoxy resin production, liquid	epoxy resin, liquid	100%	0%	0%	2%
ethylene oxide production	ethylene oxide	100%	0%	0%	2%
silica sand production	silica sand	100%	0%	0%	22%
market for chemical, organic	chemical, organic	100%	0%	0%	2%
epoxy resin production, liquid	epoxy resin, liquid	100%	0%	0%	2%
silica sand	silica sand	100%	0%	0%	2%
propylene glycol production, liquid	propylene glycol, liquid	100%	0%	0%	2%
epoxy resin production, liquid	epoxy resin, liquid	100%	0%	0%	2%
market for bisphenol A epoxy based vinyl ester resin	bisphenol A epoxy based vinyl ester resin	100%	0%	0%	2%
market for chemical, organic	chemical, organic	100%	0%	0%	2%
ethylene glycol dimethyl ether production	ethylene glycol dimethyl ether	100%	0%	0%	2%
REC2800	chemical, organic	100%	0%	0%	2%
market for chemical, organic	chemical, organic	100%	0%	0%	2%
glass fibre production	glass fibre	100%	0%	0%	2%
market for calcium	calcium carbonate, precipitated	100%	0%	0%	2%

carbonate,					
precipitated					
market for					
chemical,	chemical, organic	100%	0%	0.00%	2%
organic					
propylene					
glycol	propylene glycol,	100%	0%	0%	2%
production,	liquid				
liquid					
market for		0/	-04	-04	.04
activated	activated silica	100%	0%	0%	2%
silica .					
epoxy resin		0/	-0/	-0/	-0/
production,	epoxy resin, liquid	100%	0%	0%	2%
liquid					
polydimethyl siloxane	polydimethylsiloxane	100%	0%	0%	2%
market for					
titanium	titanium dioxide	100%	0%	0%	2%
dioxide	LITATIONI CIONICE	100/0	0/0	J/0	2/0
RT0033	tap water	100%	0%	0%	2%
epoxy resin	tap water	100/6	070	070	270
production,	epoxy resin, liquid	100%	0%	0%	2%
liquid	epoxy resin, liquid	100/0	070	070	270
silica sand					
production	silica sand	100%	0%	0%	2%
market for					
chemical,	chemical, organic	100%	0%	0%	2%
organic					
market for					
aluminium	aluminium hydroxide	100%	0%	0%	2%
hydroxide					
market for					
titanium	titanium dioxide	100%	0%	0%	2%
dioxide					
market for					
styrene-	styrene-acrylonitrile	100%	0%	0%	2%
acrylonitrile	copolymer				
copolymer					
organic chemical	chemical, organic	100%	0%	0%	2%
market for					
phenol	phenol	100%	0%	0%	2%
production	5.701701				
market for					
phenol	phenol	100%	0%	0%	2%
production					
polydimethyl		24	0.4	0.4	0.4
siloxane	polydimethylsiloxane	100%	0%	0%	2%
organic	obomical exercis	100%	00/	00/	20/
chemical	chemical, organic	100%	0%	0%	2%
	1	1	1	1	<u> </u>

Market for					
titanium	titanium dioxide	100%	0%	0%	2%
dioxide	charmann aroxido	100/0	0,0	370	270
methyl					
acetate to					
generic					
market for	methyl acetate	100%	0%	0%	2%
solvent,					
organic					
organic					
chemical	chemical, organic	100%	0%	0%	2%
organic					
chemical	chemical, organic	100%	0%	0%	2%
market for					
methylene	mothylana dinhanyl				
diphenyl	methylene diphenyl diisocyanate	100%	0%	0%	2%
diisocyan	alisocyaliate				
market for					
	polydimothylciloyana	100%	0%	0%	2%
polydimethyl siloxane	polydimethylsiloxane	100%	U/0	U/0	∠/0
	chemical, organic	100%	0%	0%	2%
organic market for	Chemical, organic	100%	0%	0%	2/0
	una a tilas el a una a altira la a una el				
methylene	methylene diphenyl	100%	0%	0%	2%
diphenyl	diisocyanate				
diisocyanate market for					
	mali ractor racio				
polyester	polyester resin,	100%	0%	0%	2%
resin, unsaturated	unsaturated				
propylene production	propylene	100%	0%	0%	2%
market for					
methylene	methylene diphenyl				
diphenyl	diisocyanate	100%	0%	0%	2%
diisocyanate	diisocyanate				
organic chemical	chemical, organic	100%	0%	0%	2%
RECINCLV	chemical, organic	100%	0%	0%	2%
RECINCLY	propylene glycol,	100%	U/o	U/o	∠/₀
RT0030	, ,	100%	0%	0%	2%
	liquid				
limestone	limestone, crushed, for mill	100%	0%	0%	2%
Drenors					
Propane	propane, burned in	100%	0%	0%	2%
burned	building machine				
HDPE for Pail	polyethylene, high	100%	0%	0%	2%
T:	density, granulate				
Tin	tin	100%	0%	0%	0
Processing					
Steel	metal working,	100%	0%	0%	0%
Processing	average for steel				

	product				
	manufacturing				
HDPE	extrusion of plastic				
Processing	sheets and	100%	0%	0%	0%
Processing	thermoforming, inline				
Pallet	EUR-flat pallet	75%	0%	25%	0%
Plastic wrap	packaging film, low density polyethylene	100%	0%	0%	1%

SYSTEM BOUNDARIES

The following figure depicts the cradle-to-gate system boundary considered in this study:

Life Cycle Impacts A1-A3 A4-A5 B1-B7 C1-C4 PRODUCT STAGE INSTALLATION PROCESS STAGE **USE STAGE END OF LIFE STAGE** A1 Raw material supply A4 Transport to site **B1** Use C1 De-installation/ A2 Transport A5 Installation **B2** Maintenance Demolition A3 Manufacturing B₃ Repaid C2 Transport **B4** Replacement C3 Waste processing **B5** Refurbishment C4 Disposal of Waste **B6** Operational energy use B7 Operational water use

Figure 5: General life cycle phases for consideration in a construction works system

This is a Cradle-to-gate life cycle assessment and the following life cycle stages are included in the study:

- A1: Raw material supply (upstream processes) Extraction, handling, and processing of the materials used in manufacturing the declared products in this LCA.
- A2: Transportation Transportation of A1 materials from the supplier to the "gate" of the manufacturing facility (i.e. A3).
- A3: Manufacturing (core processes)- The energy and other utility inputs used to store, move, and manufacturer the declared products and to operate the facility.
- A4: Product plant gate-to-site of use logistics
- A5: Product at-site installation requirements
- B: Product use phase requirements and direct emissions (if applicable)
- C: Product end-of-life requirements

As according to the PCR, the following figure illustrates the general activities and input requirements for producing ready mix concrete products and is not necessarily exhaustive.

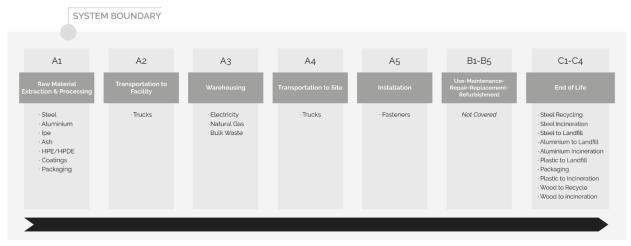


Figure 6: General system inputs considered in the product system and categorized by modules in scope

In addition, as according to the relevant PCR, the following requirements are excluded from this study:

- Production, manufacture and construction of A3 building/capital goods and infrastructure;
- Production and manufacture of steel production equipment, steel delivery vehicles, earth-moving equipment, and laboratory equipment;
- Personnel-related activities (travel, furniture, office supplies);
- Energy use related to company management and sales activities.

For this LCA the manufacturing plant, owned and operated by is located at their facility in California. All operating data is formulated using the actual data from plant at the above location, including water, energy consumption and waste generation. All inputs for this system boundary are calculated for the plant.

This life cycle inventory was organized in a spreadsheet and was then input into an RStudio environment where pre-calculated LCIA results for relevant products/activies stemming from the ecoinvent ecoinvent v3.8 database and a local EPD database in combination with primary data from were utilized. Explanations of the contribution of each data source to this study are outlined in the section 'Data Sources and Quality'. Further LCI details for each declared product are provided in the sections 'Detailed LCI tables' and 'Transport tables' of the detailed LCA report. A parameter uncertainty analysis was also performed where key statistical results

No known flows are deliberately excluded from this EPD.

(e.g. min/mean/max etc.) are provided in the detailed LCA report.

CUT-OFF CRITERIA -

ISO 14044:2006 and the focus PCR requires the LCA model to contain a minimum of 95% of the total inflows (mass and energy) to the upstream and core modules be included in this study. The cut-off criteria were applied to all other processes unless otherwise noted above as follows. A 1% cut-off is considered for all renewable and non-renewable primary energy consumption and the total mass of inputs within a unit process where the total of the neglected inputs does not exceed 5%.

DATA SOURCES AND DATA QUALITY ASSESSMENT -

No recovered on-site energy occurs at this facility.

No re-used or recycled material for utilization on-site or off-site was reported at this facility.

The following statements explain how the above facility requirements/generation were derived:

Raw material transport: Raw material transport is based on the actual distance from the manufacturer. All distances are calculated based on primary data. Materials arrive at the facility by tanker truck or freight truck. Only one product originates at a manufacturer outside the United States in England and travels by truck/boat/truck.

The PCR states, "Instances will likely occur where products are made at multiple manufacturing locations or travel to different distribution or retail centers. For situations such as this, a weighted average of production volume at each facility and/or site shall be utilized for calculation purposes." but this EPD only covers exact calculations related to the facility. However, the PCR allows for an average, the industry norm for EPDs in leaning towards facility-specific EPD. Since an EPD is valid for five years, the decision was made to make all EPDs facility specific; therefore, all transportation requirements are for the California facility only.

Electricity: Primary electricity consumption was calculated for the facility from electricity bills. fiscal year starts in June; twelve consecutive months were used, from June 2021 through May 2022. utility providers' monthly usage was in kilowatt-hours (kWh), so no conversions were performed. To calculate the amount of utility allotted to each product, the total used was multiplied by the percentage of sales by dollar amount and then divided by the number of each product manufactured.

Process/space heating: Natural gas usage was calculated by using utility bills for the fiscal year from June 2021 to May 2022.

Fuel required for machinery: On-site machinery for moving materials uses propane and was recorded in this study under Module A3. The conversion factor used for m3 to MJ to represent the burning of the natural gas was 1 m3 of natural gas= 38.3 MJ of energy.

Waste generation: All Waste was calculated using primary information from utility bills. Transportation defaults were used because the driver's route and ultimate final destination are

unknown. Therefore, the waste hauler could not confirm the exact mileage. The types of Waste included are as follows 1). Recycling: cardboard boxes, paper bags, plastic bagging, or pails; 2). Bulk Waste: trash bins from standard Waste streams from the warehouse, food, drinks, single-use plastics, and samples such as 2" x 4" tiles with cured material on top; 3). Hazardous/Regulated Waste: expired resins and products in pails/drums/ cans. Regulated waste is picked up on an "as needed" basis.

Recovered energy: No on-site energy is recovered on site.

Recycled/reused material/components: According to the Advancing Sustainable Materials Management: 2018 Fact Sheet (US EPA), only 4% of the total plastic packaging is recycled in the USA. Similarly, 4.47% of Plastic waste from pallets were assumed to be recycled off-site at the end of their service life. These numbers are in alignment with the PCR for Resinous Floor Coverings. The PCR also states the transportation distance to the disposal point is 11 km plus the default value in the WARRM Model which is 20 miles (32 km). A total value of 43 km was used per the PCR.

Module A1 material losses: Default material losses were used unless otherwise specified in the PCR. For instance, per the PCR, "It shall be assumed that there is a loss of 2% of the wet mass of the coating remains unused and is properly disposed as solid waste. This value was determined via industry consensus during the PCR development process and represents a conservative estimate."

Direct A3 emissions accounting: Direct emissions were modeled with best available ecoinvent processes (see LCI list).

A4 Product transport requirements: The average customer or project was calculated based on Dex-O-Tex records for shipping. On average, the customer for the California factory was within 100 miles or (160.9 km) from the factory. In addition, 25% of the orders were picked up by the project installer and not shipped.

sells direct to installers and therefore no distribution was calculated as part of this module per the PCR guidelines.

A5 product installation: In accordance with the requirements of ISO 21930:2017, the impact from the activities normally considered in Module A1-A3 (production stage) and in Module A4 (transport to site) for the mass of product wasted during application are included in the Module A5 and not Modules A1 to A4. Additionally, waste processing of the packaging system shall also be accounted in module A5.

B product use phase: Maintenance is thoroughly explained in the PCR for Resinous Floor Coverings. Per the PCR, "It shall be assumed that a cleaning event (1 gallon of mop water with an added ½ cup of cleaning solution) can accommodate 100 m2. Therefore, to satisfy the 60-year time frame functional unit, a total of 21,840 cleaning events will take place, corresponding to 218.4 events for the smaller surface area considered by the functional unit (1 m2 vs. 100 m2). Another 1.6 cleaning events shall also be added to account for any spot cleaning events that may occur. The total impact of these 220 cleaning events shall be reported." This means that 886 liters of tap water are used per m2 of the installed floor.

The process "market for cleaning consumables, without water, in 13.6% solution state, Global" was used to represent a cleaning solution for the floors in use. This is the best available Ecoinvent process. The formula assumes a product density of 100 fl oz. per 2.5 L cleaner. The market process was used due to the level of uncertainty as to where the origin of the cleaner is and how many levels of warehousing and distribution are present.

C product end-of-life: Per the PCR, the following guidelines were followed. "In the United States, the 2012 EPA Waste Reduction Model (WARM model) gives an average transport end of life distance as 32 km. This value shall be used for manufacturing facilities located in the US when primary data or other representative data are not available, and waste transports are not included in the secondary dataset."

The following tables depict a list of assumed life cycle inventory utilized in the LCA modeling to generate the impact results across the life cycle modules in scope. An assessment of the quality of each LCI activities utilized from various sources is also provided.

Table 8: LCI inputs assumed for module A1 (i.e. raw material supply)

Input	LCI.activity	Data.source	geo Geo	Year	Technology	Time	Geography	Reliability	Completeness
methyl acetate to	oxidation of butane/methyl	ecoinvent v3.8	Texas	v3.8 in					
generic market for solvent, organic	acetate/RoW/kg	V3.0		2021	2	3	2	3	3
Pallet	market for EUR-flat pallet/EUR-flat pallet/RoW/unit	ecoinvent v3.8	Multiple Regions	v3.8 in 2021	1	3	1	3	3
market for	polyester resin	ecoinvent	Pennsylva	v3.8 in					
polyester resin, unsaturated	production, unsaturated/polyester resin, unsaturated/RoW/kg	v3.8	nia nia	2021	2	3	2	3	3
propylene production	propylene production/propylene /RoW/kg	ecoinvent v3.8	Pennsylva nia	v3.8 in 2021	2	3	2	3	3
polydimethy lsiloxane	polydimethylsiloxane production/polydimet hylsiloxane/GLO/kg	ecoinvent v3.8	New Jersey	v3.8 in 2021	2	3	2	3	3
market for aluminium hydroxide	aluminium hydroxide production/aluminium hydroxide/RoW/kg	ecoinvent v3.8	Georgia	v3.8 in 2021	2	3	2	3	3
silica sand production	silica sand production/silica sand/RoW/kg	ecoinvent v3.8	Georgia	v3.8 in 2021	2	3	2	3	3
market for bisphenol A epoxy based vinyl ester resin	bisphenol A epoxy based vinyl ester resin production/bisphenol A epoxy based vinyl ester resin/RoW/kg	ecoinvent v3.8	New Jersey	v3.8 in 2021	2	3	2	3	3

Plastic wrap	packaging film	ecoinvent	Multiple	v3.8 in					
	production, low	v3.8	Regions	2021					
	density				1	3	1	3	3
	polyethylene/packagi				-	~	-		
	ng film, low density								
	polyethylene/RoW/kg		N 4'	- 0 '					
epoxy resin	epoxy resin	ecoinvent	Missouri	v3.8 in					
production,	production,	v3.8		2021	2	3	2	3	3
liquid	liquid/epoxy resin, liquid/RoW/kg								
ethylene	ethylene glycol	ecoinvent	New	v3.8 in					
glycol	dimethyl ether	v3.8	Jersey	2021					
dimethyl	production/ethylene	13.0			2	3	2	3	3
ether	glycol dimethyl				-	"			
production	ether/RoW/kg								
RT0033	tap water production,	ecoinvent	California	v3.8 in	†				
	ultrafiltration	v3.8		2021					
	treatment/tap				2	3	2	3	3
	water/RoW/kg								
Propane	propane, burned in	ecoinvent	California	v3.8 in					
burned	building	v3.8		2021					
	machine/propane,				2	3	2	3	3
	burned in building								
	machine/GLO/MJ								
HDPE	extrusion of plastic	ecoinvent	California	v3.8 in					
Processing	sheets and	v3.8		2021					
	thermoforming,								
	inline/extrusion of				2	3	2	3	3
	plastic sheets and								
	thermoforming,								
ropylene	inline/RoW/kg	ecoinvent	California	v3.8 in	-				
glycol	propylene glycol production,	v3.8	Calliornia	2021					
production,	liquid/propylene	V3.0		2021	2	3	2	3	3
liquid	glycol, liquid/RoW/kg								
Steel	metal working,	ecoinvent	California	v3.8 in	+				
Processing	average for steel	v3.8	Cathornia	2021					
	product	V 3.0		2021					
	manufacturing/metal								
	working, average for				2	3	2	3	3
	steel product								
	manufacturing/RoW/k								
	g								
market for	chemical production,	ecoinvent	Missouri	v3.8 in					
chemical,	organic/chemical,	v3.8		2021	2	3	2	3	3
organic	organic/GLO/kg								
Tin	tin	ecoinvent	California	v3.8 in					
Processing	production/tin/RoW/	v3.8		2021	2	3	2	3	3
	kg								
			·						_

ethylene	ethylene oxide	ecoinvent	New	v3.8 in		Ι	Ι		
oxide	production/ethylene	v3.8	Jersey	2021	2	3	2	3	3
production	oxide/RoW/kg								
market for	styrene-acrylonitrile	ecoinvent	New	v3.8 in					
styrene-	copolymer	v3.8	Jersey	2021					
acrylonitrile	production/styrene-				2	3	2	3	3
copolymer	acrylonitrile								
	copolymer/RoW/kg								
limestone	limestone production,	ecoinvent	California	v3.8 in					
	crushed, for	v3.8		2021					
	mill/limestone,				2	3	2	3	3
	crushed, for								
	mill/RoW/kg								
market for	market for methylene	ecoinvent	Missiouri	v3.8 in					
methylene	diphenyl	v3.8		2021					
diphenyl	diisocyanate/methyle				2	3	2	3	3
diisocyanate	ne diphenyl								
-	diisocyanate/RoW/kg								
market for	phenol	ecoinvent	New	v3.8 in					
phenol	production/phenol/Ro	v3.8	Jersey	2021	2	3	2	3	3
production	W/kg								
market for	titanium dioxide	ecoinvent	Missiouri	v3.8 in					
titanium	production, sulfate	v3.8		2021					
dioxide	process/titanium				2	3	2	3	3
	dioxide/RoW/kg								
market for	activated silica	ecoinvent	Pennsylva	v3.8 in					
activated	production/activated	v3.8	nia	2021	2	3	2	3	3
silica	silica/GLO/kg								
HDPE for Pail	polyethylene	ecoinvent	Multiple	v3.8 in					
	production, high	v3.8	Regions	2021					
	density,				1	1	1	_	_
	granulate/polyethylen				1	3	1	3	3
	e, high density,								
	granulate/RoW/kg								
market for	calcium carbonate	ecoinvent	Missiouri	v3.8 in					
calcium	production,	v3.8		2021					
carbonate,	precipitated/calcium				2	3	2	3	3
precipitated	carbonate,								
	precipitated/RoW/kg								
glass fibre	glass fibre	ecoinvent	Missiouri	v3.8 in					
production	production/glass	v3.8		2021	2	3	2	3	3
	fibre/RoW/kg								
market for	methylene diphenyl	ecoinvent	Missiouri	v3.8 in					
methylene	diisocyanate	v3.8		2021					
diphenyl	production/methylene				2	3	2	3	3
diisocyanate	diphenyl								
	diisocyanate/RoW/kg								

Table 9: LCI inputs assumed for module A2 (i.e. transport of A1 inputs)

Input	LCI.activity	Data.source	Geo	Year	Technology	Time	Geography	Reliability	Completeness
Bulk Waste-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16 metric ton,								
	EURO6/RoW/tkm								
epoxy resin	market for transport,	ecoinvent	RoW	v3.8 in					
production,	freight, lorry 7.5-16	v3.8		2021					
liquid-	metric ton,								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton, EURO6/RoW/tkm								
ethylene	market for transport,	ecoinvent	RoW	v3.8 in					
glycol	freight, lorry 7.5-16	v3.8	11011	2021					
dimethyl	metric ton,								
ether	EURO6/transport,				2				
production-	freight, lorry 7.5-16				2	3	1	3	3
freight	metric ton,								
transport via	EURO6/RoW/tkm								
Truck	recorded for two records	a a a iray sa sa t	De)V/	vo O in					
ethylene oxide	market for transport, freight, lorry 7.5-16	ecoinvent v3.8	RoW	v3.8 in					
production-	metric ton,	V3.0		2021					
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm								
glass fibre	market for transport,	ecoinvent	RoW	v3.8 in					
production-	freight, lorry 7.5-16	v3.8		2021					
freight	metric ton, EURO6/transport,								
transport via Truck	freight, lorry 7.5-16				2	3	1	3	3
TIMOR	metric ton,								
	EURO6/RoW/tkm								
HDPE	market group for	ecoinvent	GLO	v3.8 in					
Processing-	transport, freight, light	v3.8		2021					
freight	commercial								
transport via	vehicle/transport,				2	3	1	3	3
Truck	freight, light								
	commercial vehicle/GLO/tkm								
	venicle/ GLO/ lkm		<u> </u>						

limestone-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
activated	freight, lorry 7.5-16	v3.8		2021					
silica-	metric ton.								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16				-		-		
Truck	metric ton,								
	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RER	v3.8 in					
aluminium	freight, lorry 3.5-7.5	v3.8	I KLIK	2021					
hydroxide-	metric ton.	V 3.0		2021					
freight	EURO5/transport,				2	3	1	3	3
transport via	freight, lorry 3.5-7.5				-	3	1	3	٥
Truck	metric ton,								
Truck	EURO5/RER/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in	-	-			
bisphenol A	freight, lorry 7.5-16	v3.8	ROW	2021					
epoxy based	metric ton,	V3.0		2021					
vinyl ester	EURO6/transport,				2		1	1	
resin- freight	freight, lorry 7.5-16				2	3	1	3	3
transport via	metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
calcium	freight, lorry 7.5-16	v3.8	ROW	2021					
carbonate,	metric ton,	V3.0		2021					
precipitated	EURO6/transport,				2				
- freight	· ·				4	3	1	3	3
transport via	freight, lorry 7.5-16 metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in	-	-			
chemical,	freight, lorry 7.5-16	v3.8	1000						
organic-	metric ton,	V 3.0		2021					
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16				-	3	*	٥	3
Truck	metric ton,								
Huck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
methylene	freight, lorry 7.5-16	v3.8	110 00	2021					
diphenyl	metric ton,	V3.0		2021					
diisocyan-	EURO6/transport,				2	3	1	3	3
freight	freight, lorry 7.5-16				-	ا ا	1	٦)
transport via	metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in	+	+		-	
	freight, lorry 7.5-16		ROW		2	3	1	3	3
methylene	Treight, torry 7.5-10	v3.8		2021					

diphenyl	metric ton,								
diisocyanate	EURO6/transport,								
- freight	freight, lorry 7.5-16								
transport via	metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
phenol	freight, lorry 7.5-16	v3.8		2021					
production-	metric ton,								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
polydimethy	freight, lorry 7.5-16	v3.8		2021					
lsiloxane-	metric ton,								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
polyester	freight, lorry 7.5-16	v3.8		2021					
resin,	metric ton,								
unsaturated	EURO6/transport,				2	3	1	3	3
- freight	freight, lorry 7.5-16								
transport via	metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
styrene-	freight, lorry 7.5-16	v3.8		2021					
acrylonitrile	metric ton,								
copolymer-	EURO6/transport,				2	3	1	3	3
freight	freight, lorry 7.5-16								
transport via	metric ton,								
Truck	EURO6/RoW/tkm								
market for	market for transport,	ecoinvent	RoW	v3.8 in					
titanium	freight, lorry 7.5-16	V3.8		2021					
dioxide-	metric ton,								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm								
Market for	market for transport,	ecoinvent	RoW	v3.8 in					
titanium	freight, lorry 7.5-16	v3.8		2021					
dioxide-	metric ton,								
freight	EURO6/transport,				2	3	1	3	3
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm	1	15 ,				1		<u> </u>
methyl	market for transport,	ecoinvent	RoW	v3.8 in					
acetate to	freight, lorry 7.5-16	v3.8		2021	2	3	1	3	3
generic	metric ton,							1	-
market for	EURO6/transport,								<u> </u>

			1				1		
solvent, organic-	freight, lorry 7.5-16 metric ton,								
freight transport via	EURO6/RoW/tkm								
Truck									
organic-	market group for	ecoinvent	GLO	v3.8 in					
freight transport via	transport, freight, inland waterways,	v3.8		2021					
Barge	barge/transport,				2	3	1	3	3
	freight, inland								
	waterways, barge/GLO/tkm								
organic-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport, freight, lorry 7.5-16				2	3	1	3	3
	metric ton,								
	EURO6/RoW/tkm								
organic	market for transport,	ecoinvent	RoW	v3.8 in					
chemical- freight	freight, lorry 7.5-16 metric ton,	v3.8		2021					
transport via	EURO6/transport,				2	3	1	3	3
Truck	freight, lorry 7.5-16								
	metric ton,								
Plastic	EURO6/RoW/tkm market for transport,	ecoinvent	RoW	v3.8 in	-		-		
wrap-	freight, lorry 7.5-16	v3.8	ROW	2021					
freight	metric ton,								
transport via	EURO6/transport,				2	3	1	3	3
Truck	freight, lorry 7.5-16								
	metric ton, EURO6/RoW/tkm								
polydimethy	market for transport,	ecoinvent	RoW	v3.8 in					
lsiloxane-	freight, lorry 7.5-16	v3.8		2021					
freight transport via	metric ton, EURO6/transport,				2	3	1	3	3
Truck	freight, lorry 7.5-16				-	3	1	3	3
	metric ton,								
	EURO6/RoW/tkm	<u> </u>							
propylene glycol	market for transport, freight, lorry 7.5-16	ecoinvent v3.8	RoW	v3.8 in					
production,	metric ton,	V3.0		2021					
liquid-	EURO6/transport,				2	3	1	3	3
freight	freight, lorry 7.5-16								
transport via Truck	metric ton, EURO6/RoW/tkm								
propylene	market for transport,	ecoinvent	RoW	v3.8 in	+		+		
production-	freight, lorry 7.5-16	v3.8	1.0 **	2021					
freight	metric ton,				2	3	1	3	3
	EURO6/transport,								

Augusta and Life	funiculat laws 175 46	1	T		1	1		1	
transport via	freight, lorry 7.5-16								
Truck	metric ton,								
	EURO6/RoW/tkm		5)) / (1			
REC2800-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
RECINCLV-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
Recycling	market for transport,	ecoinvent	RoW	v3.8 in					
from Plant-	freight, lorry 7.5-16	v3.8		2021					
freight	metric ton,								
transport via	EURO6/transport,				2	3	1	3	3
Truck	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
Regulated	market for transport,	ecoinvent	RER	v3.8 in					
Waste-	freight, lorry 3.5-7.5	v3.8		2021					
freight	metric ton,								
transport via	EURO5/transport,				2	3	1	3	3
Truck	freight, lorry 3.5-7.5								
	metric ton,								
	EURO5/RER/tkm								
RT0030-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
silica sand-	market for transport,	ecoinvent	RoW	v3.8 in					
freight	freight, lorry 7.5-16	v3.8		2021					
transport via	metric ton,								
Truck	EURO6/transport,				2	3	1	3	3
	freight, lorry 7.5-16								
	metric ton,								
	EURO6/RoW/tkm								
silica sand	market for transport,	ecoinvent	RoW	v3.8 in					
production-	freight, lorry 7.5-16	v3.8		2021					
freight	metric ton,				2	3	1	3	3
transport via	EURO6/transport,								
Truck	freight, lorry 7.5-16								
	, , , , , ,	1	1		1	1			

	metric ton, EURO6/RoW/tkm								
Steel	market group for transport, freight, light	ecoinvent	GLO	v3.8 in					
Processing- freight	commercial	v3.8		2021					
transport via	vehicle/transport,				2	3	1	3	3
Truck	freight, light commercial vehicle/GLO/tkm								
Tin	market group for	ecoinvent	GLO	v3.8 in					
Processing-	transport, freight, light	v3.8		2021					
freight	commercial								
transport via	vehicle/transport,				2	3	1	3	3
Truck	freight, light								
	commercial								
	vehicle/GLO/tkm								

Table 10: LCI inputs assumed for module A3

Input	LCI.activity	Data.source	Geo	Year	Technology	Time	Geography	Reliability	Completeness
Bulk Waste	process-specific burdens, inert material landfill/process- specific burdens, inert material landfill/RoW/kg	ecoinvent v3.8	California	v3.8 in 2021	2	3	2	3	3
Electricity	market for electricity, medium voltage/electricity, medium voltage/US- WECC/kWh	ecoinvent v3.8	California	v3.8 in 2021	2	3	2	3	3
Natual Gas	market for heat, district or industrial, natural gas/heat, district or industrial, natural gas/RoW/MJ	ecoinvent v3.8	California	v3.8 in 2021	2	3	2	3	3
Recycling from Plant	container production, for collection of post- consumer waste plastic for recycling/container, for collection of post- consumer waste plastic for recycling/Europe	ecoinvent v3.8	California	v3.8 in 2021	2	3	2	3	3

	without Switzerland/unit								
Regulated	process-specific	ecoinvent	California	v3.8 in					
Waste	burdens, hazardous	v3.8		2021					
	waste incineration								
	plant/process-specific				2	3	2	3	3
	burdens, hazardous								
	waste incineration								
	plant/RoW/kg								
Water	market for tap	ecoinvent	California	v3.8 in					
	water/tap	v3.8		2021	2	3	2	3	3
	water/RoW/kg								

Table 11: LCI inputs assumed across modules A4 to C4 (i.e. from plant gate-to-grave if applicable)

Input	LCI.activity	Data.source	Geo	Year	Technology	Time	Geography	Reliability	Completeness
A5. 2% unused material loss	treatment of waste emulsion paint, municipal incineration/electricity, for reuse in municipal waste incineration only/RoW/kWh	ecoinvent v3.8	California	v3.8 in 2021	2	3	2	3	3
A5. 2% unused material loss- freight transport via Truck	market group for transport, freight, light commercial vehicle/transport, freight, light commercial vehicle/GLO/tkm	ecoinvent v3.8	see corrsp. product input above	v3.8 in 2021	2	3	1	3	3
B2. cleaning concentrate	market for cleaning consumables, without water, in 13.6% solution state/cleaning consumables, without water, in 13.6% solution state/GLO/kg	ecoinvent v3.8	Multiple Regions	v3.8 in 2021	1	3	1	3	3
A4. Customer pick up	Product-to-site transport requirements	See A4 transport requirement s	California	2021- 06-01 to 2022- 05-31	NA	NA	NA	NA	NA
A4. Customer pick up-	market group for transport, freight, light commercial	ecoinvent v3.8	see corrsp. product	v3.8 in 2021	2	3	1	3	3

C		I	I to		1	1		1	
freight	vehicle/transport,		input						
transport via	freight, light		above						
Truck	commercial								
	vehicle/GLO/tkm								
C3. End of	process-specific	ecoinvent	Multiple	v3.8 in					
Life	burdens, inert material	v3.8	Regions	2021					
	landfill/process-				2	3	2	3	3
	specific burdens, inert				-	3	_	3	3
	material								
	landfill/RoW/kg								
C2. End of	market for transport,	ecoinvent	see	v3.8 in					
Life- freight	freight, lorry 3.5-7.5	v3.8	corrsp.	2021					
transport via	metric ton,		product						
Truck	EURO5/transport,		input		2	3	1	3	3
	freight, lorry 3.5-7.5		above						
	metric ton,								
	EURO5/RER/tkm								
A ₅ . Pallets to	treatment of waste	ecoinvent	Multiple	v3.8 in					
Landfill	wood, untreated,	v3.8	Regions	2021					
	sanitary landfill/waste				1	3	1	3	3
	wood,								
	untreated/RoW/kg								
A ₅ . Pallets to	market for transport,	ecoinvent	see	v3.8 in					
Landfill-	freight, lorry 7.5-16	v3.8	corrsp.	2021					
freight	metric ton,		product						
transport via	EURO6/transport,		input		2	3	1	3	3
Truck	freight, lorry 7.5-16		above						
	metric ton,								
	EURO6/RoW/tkm								
A ₅ . Pallets to	waste wood, post-	ecoinvent	Multiple	v3.8 in					
Recycling	consumer, Recycled	v3.8	Regions	2021					
	Content cut-off/waste				1	3	1	3	3
	wood, post-								
	consumer/GLO/kg								
A ₅ . Pallets to	market for transport,	ecoinvent	see	v3.8 in					
Recycling-	freight, lorry 7.5-16	v3.8	corrsp.	2021					
freight	metric ton,		product						
transport via	EURO6/transport,		input		2	3	1	3	3
Truck	freight, lorry 7.5-16		above						
	metric ton,								
	EURO6/RoW/tkm								
B4. per m2	A1-to-A5 replacement	See A3	See	See A3					
A-module	requirements for	inputs	specific	inputs		١.			١.
requirement	service life		A-inputs		2	A3	2	A3	A3
s for 60yr									
service life	D 1 11 "	C A	0 1.0						
A4. Product	Product-to-site	See A4	California	2021-					
to Site	transport requirements	transport		06-01	N. A		 N A	N. A	
		requirement		to	NA	NA	NA	NA	NA
		S		2022-					
				05-31					<u> </u>

A4. Product to Site-	market for transport, freight, lorry 3.5-7.5	ecoinvent v3.8	see corrsp.	v3.8 in					
freight	metric ton,	73.0	product						
transport via	EURO5/transport,		input		2	3	1	3	3
Truck	freight, lorry 3.5-7.5		above						
	metric ton,								
	EURO5/RER/tkm								
A5. Steel for	iron scrap, sorted,	ecoinvent	Multiple	v3.8 in					
can	pressed, Recycled	v3.8	Regions	2021					
	Content cut-off/iron				1	3	1	3	3
	scrap, sorted,								
Do Ton	pressed/GLO/kg		California						
B2. Tap Water for	market for tap water/tap	ecoinvent v3.8	California	v3.8 in					
Cleaning	water/RoW/kg	V3.0		2021	2	3	2	3	3
A5. Tin for	treatment of scrap tin	ecoinvent	Multiple	v3.8 in					\vdash
can	sheet, municipal	V3.8	Regions	2021					
Carr	incineration/scrap tin	V J.O	regions	2021	1	3	1	3	3
	sheet/RoW/kg								
A5. Waste	treatment of waste	ecoinvent	Multiple	v3.8 in					
Plastic to	plastic, mixture,	v3.8	Regions	2021					
landfill	sanitary landfill/waste				1	3	1	3	3
	plastic,								
	mixture/RoW/kg								
A5. Waste	market group for	ecoinvent	see	v3.8 in					
Plastic to	transport, freight, light	v3.8	corrsp.	2021					
landfill-	commercial		product		_	_			_
freight	vehicle/transport,		input		2	3	1	3	3
transport via Truck	freight, light commercial		above						
Truck	vehicle/GLO/tkm								
A5. Waste	market for waste	ecoinvent	Multiple	v3.8 in					_
Plastic to	plastic, mixture/waste	v3.8	Regions	2021					
Recycling	plastic,				1	3	1	3	3
, 3	mixture/RoW/kg								
A5. Waste	market for transport,	ecoinvent	see	v3.8 in					
Plastic to	freight, lorry 7.5-16	v3.8	corrsp.	2021					
Recycling-	metric ton,		product						
freight	EURO6/transport,		input		2	3	1	3	3
transport via	freight, lorry 7.5-16		above						
Truck	metric ton,								
	EURO6/RoW/tkm								<u> </u>

DATA QUALITY ASSESSMENT -

Data quality/variability requirements, as specified in the PCR, are applied. This section describes the achieved data quality relative to the ISO 14044:2006 requirements. Data quality is judged based on its precision (measured, calculated or estimated), completeness (e.g., unreported emissions), consistency (degree of uniformity of the methodology applied within a study serving as a data source) and representativeness (geographical, temporal, and technological).

Precision: Through measurement and calculation, the manufacturers collected and provided primary data on their annual production. For accuracy, the LCA practitioner and 3rd Party Verifier validated the plant gate-to-gate data.

Completeness: All relevant specific processes, including inputs (raw materials, energy and ancillary materials) and outputs (emissions and production volume) were considered and modeled to represent the specified and declared products. The majority of relevant background materials and processes were taken from ecoinvent ecoinvent v3.8 LCI datasets where relatively recent region-specific electricity inputs were utilized. The most relevant EPDs requiring key A1 inputs were also utilized where readily available.

Consistency: To ensure consistency, the same modeling structure across the respective product systems was utilized for all inputs, which consisted of raw material inputs and ancillary material, energy flows, water resource inputs, product and co-products outputs, returned and recovered Resinous flooring materials, emissions to air, water and soil, and waste recycling and treatment. The same background LCI datasets from the ecoinvent ecoinvent v3.8 database were used across all product systems. Crosschecks concerning the plausibility of mass and energy flows were continuously conducted. The LCA team conducted mass and energy balances at the plant and selected process level to maintain a high level of consistency.

Reproducibility: Internal reproducibility is possible since the data and the models are stored and available in a machine readable project file for all foreground and background processes, and in proprietary Resinous flooring LCA calculator* for all production facility and product-specific calculations. A considerable level of transparency is provided throughout the detailed LCA report as the specifications and material quantity make-up for the declared products are presented and key primary and secondary LCI data sources are summarized. The provision of more detailed publicly accessible data to allow full external reproducibility was not possible due to reasons of confidentiality.

has developed a proprietary tool that allows the calculation of PCR-compliant LCA results for Resinous flooring product designs. The tool auto-calculates results by scaling base-unit technosphere inputs (i.e. 1 kg sand, 1 kWh electricity, etc.) to replicate the reference flow conversions that take place in any typical LCA software like openLCA or SimaPro. The tool was tested against several LCAs performed in openLCA and the tool generated identical results to those realized in openLCA across every impact category and inventory metric (where comparisons could be readily made).

Representativeness: The representativeness of the data is summarized as follows.

- Time related coverage of the manufacturing processes' primary collected data from 2021-06-01 to 2022-05-31.
- Upstream (background) LCI data was either the PCR specified default (if applicable) or more appropriate LCI datasets as found in the country-adjusted ecoinvent ecoinvent v3.8 database
- Geographical coverage for inputs required by the A3 facility(ies) is representative of its region of focus; other upstream and background processes are based on US, North

American, or global average data and adjusted to regional electricity mixes when relevant.

• Technological coverage is typical or average and specific to the participating facilities for all primary data.

ENVIRONMENTAL INDICATORS AND INVENTORY METRICS

Per the PCR, this EPD supports the life cycle impact assessment indicators and inventory metrics as listed in the tables below. As specified in the PCR, the most recent US EPA Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), impact categories were utilized as they provide a North American context for the mandatory category indicators to be included in the EPD. Additionally, the PCR requires a set of inventory metrics to be reported with the LCIA indicators (see tables below).

Table 12: Life cycle impact categories and life cycle inventory metrics

ID	LCIA.indicators	Abbreviations	Units
1	environmental impact: acidification	AP	moles of H+-Eq
2	environmental impact: eutrophication	EP	kg N
3	environmental impact: global warming	GWP	kg CO2-Eq
4	environmental impact: ozone depletion	ODP	kg CFC-11-Eq
5	environmental impact: photochemical oxidation	PCOP	kg NOx-Eq
6	material resources: metals/minerals: abiotic depletion	ADPe	kg Sb-Eq
	potential (ADP): elements (ultimate reserves)		
7	energy resources: non-renewable: abiotic depletion	ADPf	MJ, net calorific
	potential (ADP): fossil fuels		value
Inventor	y metrics		
8	Total primary energy	TPE	MJ-Eq
9	Renewable energy	RE	MJ-Eq
10	Non-renewable energy	NRE	MJ-Eq
11	Non-Renewable Resources	NRR	kg
12	Renewable Resources	RR	m3
13	water depletion: WDP	WDP	m3
14	land filling: bulk waste	LFW	kg waste
15	land filling: hazardous waste	LFHW	kg waste
16	resource: carbon, biogenic, fixed	bioC	kg

A summary description of each of the impact categories and inventory metrics is provided in the following table:

Table 13: Definitions of life cycle impact categories and life cycle inventory metrics

Global Warming Potential or climate change can be defined as the change in global temperature caused by the greenhouse effect that the release of greenhouse gases by human activity creates. The Environmental Profiles characterization model is based on factors developed by the United Nations Intergovernmental Panel on Climate Change (IPCC). Factors are expressed as

Global Warming Potential over the time horizon of different years, being the

	most common 100 years (GWP100), measured in the reference unit, kg CO2 equivalent.
Ozone Depletion Potential (ODP) (kg CFC-11-eq)	Ozone-depleting gases cause damage to stratospheric ozone or the ozone layer. CFCs, halons and HCFCs are the major causes of ozone depletion. The characterization model has been developed by the World Meteorological Organization (WMO) and defines the ozone depletion potential of different gases relative to the reference substance chlorofluorocarbon-11 (CFC-11), expressed in kg CFC-11 equivalent.
Acidification Potential (AP) (kg SO2-eq)	Acidic gases such as Sulphur dioxide (SO2) react with water in the atmosphere to form acid rain, a process known as acid deposition. Acidification potential is expressed using the reference unit, kg SO2 equivalent. The model does not take account of regional differences in terms of which areas are more or less susceptible to acidification. It accounts only for acidification caused by SO2 and NOx. This includes acidification due to fertilizer use, according to the method developed by the Intergovernmental Panel on Climate Change (IPCC). CML has based the characterization factor on the RAINS model developed by the University of Amsterdam.
Eutrophication Potential (EP) (PO4 3eq)	Eutrophication is the build-up of a concentration of chemical nutrients in an ecosystem which leads to abnormal productivity. This causes excessive plant growth like algae in rivers which causes severe reductions in water quality and animal populations. This category is based on the work of Heijungs, and is expressed using the reference unit, kg PO4 3- equivalents. Direct and indirect impacts of fertilizers are included in the method. The direct impacts are from production of the fertilizers and the indirect ones are calculated using the IPCC method to estimate emissions to water causing eutrophication.
Photochemical Ozone Creation/Smog Potential (POCP) (kg O3-eq)	Ozone is protective in the stratosphere, but on the ground-level, it is toxic to humans in high concentration. Photochemical ozone, also called ground-level ozone, is formed by the reaction of volatile organic compounds and nitrogen oxides in the presence of heat and sunlight. The impact category depends largely on the amounts of carbon monoxide (CO), Sulphur dioxide (SO2), nitrogen oxide (NO), ammonium and NMVOC (non-methane volatile organic compounds). Photochemical ozone creation potential (also known as summer smog) for emission of substances to air is calculated with the United Nations Economic Commission for 22 Europe (UNECE) trajectory model (including fate) and expressed using the reference unit, kg ethylene (C2H4) equivalent.
Abiotic Depletion Potential (ADPel and ADPff) (kg Sb-eq)	The main concern of this category is the health of humans and the ecosystem and how it is affected by the extraction of minerals and fossil fuels, which are inputs into the system. For each extraction of minerals and fossil fuels, the abiotic depletion factor is determined. This indicator is on a global scale and is based on the concentration reserves and rate of deaccumulation. The results are presented in units of the reference element strontium (i.e. Sb). For the purposes of this EPD, this impact category is split between mineral elements (i.e. ADPel) and fossil fuels (i.e. ADPff).
Inventory metrics	1
Depletion of non-renewable material resources (NRM) (kg)	This indicator covers the cumulative life cycle consumption of non-renewable resources that are extracted from the ground but not including energy resources like coal, oil and natural gas. This indicator includes the consumption of metallic ores, aggregates, and other minerals. The units of measure are in terms of kilograms material extracted and utilzied/wasted in the life cycle system considered.

This indicator covers the cumulative life cycle consumption of renewable resources that are extracted from nature like sustainably harvested biomass. The units of measure are in terms of kilograms material extracted and utilzied/wasted in the life cycle system considered.
This indicator considers the cumulative life cycle consumption of non-renewable energy resources like oil, natural gas, and coal. The units of measure are in terms of Mega-Joules of energy resource extracted and utilzied/wasted in the life cycle system considered.
This indicator considers the cumulative life cycle extraction of renewable energy resources from nature like solar and wind energy as well as biomass for energy purposes. The units of measure are in terms of Mega-Joules of energy resource extracted and utilzied/wasted in the life cycle system considered.
This indicator is the summatation of non-renewable and renewable energy extracted from nature, where the units of measure are in terms of Mega-Joules of energy resource extracted/utilized/wasted in the life cycle system considered.
This indicator is defined as the direct water used in concrete mix batches. The units of measure are in cubic meters of water consumed.
This inidcator is defined as the direct washing water used at the facility. The units of measure are in cubic meters of wash water consumed.
This indicator considers the cumulative life cycle consumption of water required to produce the declared functional unit of a given product. The units of measure are in cubic meters of water consumed.
This indicator considers the amount of hazardous waste waste generated at the concrete facility. The units of measure are in kilograms of waste generated.
This indicator considers the direct amount of non-hazardous waste generated at the concrete facility. The units of measure are in kilograms of waste generated.

It should be noted that emerging LCA impact categories and inventory items are still under development and can have high levels of uncertainty that preclude international acceptance pending further development. Use caution when interpreting data in any of the following categories.

- Renewable primary energy resources as energy (fuel);
- Renewable primary resources as material;
- Non-renewable primary resources as energy (fuel);
- Non-renewable primary resources as material;
- Secondary Materials;
- Renewable secondary fuels;
- Non-renewable secondary fuels;
- Recovered energy;
- Abiotic depletion potential for non-fossil mineral resources.
- Land use related impacts, for example on biodiversity and/or soil fertility;
- Toxicological aspects;
- Emissions from land use change [GWP 100 (land-use change)];
- Hazardous waste disposed;
- Non-hazardous waste disposed;
- High-level radioactive waste;

- Intermediate and low-level radioactive waste;
- Components for reuse;
- Materials for recycling;
- Materials for energy recovery;
- Recovered energy exported from the product system.

TOTAL IMPACT SUMMARY -

The following table reports the total LCA results for each product produced at the given resinous flooring facility on a per 1 m2 of covered and protected flooring surface for a period of 60 years.

Thin-Mil

Table 14: Total life cycle (across modules in scope) impact results for Thin-Mil, assuming the geometric mean point values on a per 1 m2 of covered and protected flooring surface for a period of 60 years basis.

a) Midpoint Impact Categories:

Indicator/LCI Metric	AP	EP	GWP	ODP	PCOP	ADPe	ADPf
Unit	moles of H+-Eq	kg N	kg CO2- Eq	kg CFC- 11-Eq	kg NOx- Eq	kg Sb-Eq	MJ, net calorific value
Minimum	1.74	0.00375	8.15	6.69e-07	0.0219	0.000232	130
Maximum	11.1	0.0308	52.2	5.14e-06	0.135	0.002	1040
Mean	5.81	0.0145	25.9	2.67e-06	0.069	0.000855	475
Median	5.78	0.0146	26.6	2.67e-06	0.0662	0.000764	482
Décor-Flor (MSL)	6.06	0.0147	28.2	2.62e-06	0.0703	0.000783	519
Posi-Tred SL (MSL)	6.87	0.0196	30.4	3.49e-06	0.0803	0.000743	603
Posi-Tred CR (MSL)	7.57	0.0165	34.6	3.09e-06	0.0815	0.000305	672
VaporControl 1P (MSL)	8.79	0.0231	40	4e-06	0.108	0.002	792
Vapor Control FC (MSL)	11.1	0.0308	52.2	5.14e-06	0.135	0.00129	1040
Electro Flor ESD (MSL)	7.08	0.0151	29	3.03e-06	0.082	0.00117	497
Electro Flor CD (MSL)	6.99	0.0155	30.7	3.01e-06	0.0876	0.00117	507
Quik-Glaze (MSL)	7.21	0.0195	28.8	3.36e-06	0.0778	0.000744	481
Aero Flor (MSL)	3.69	0.00962	16.2	1.51e-06	0.0452	0.000616	272
HPT (MSL)	2.38	0.00504	10.9	8.44e-07	0.0313	0.000801	171
Décor-Flor (TSL)	4.26	0.0105	19.5	2e-06	0.0517	0.000623	379
Posi-Tred SL (TSL)	4.75	0.0138	22.2	2.53e-06	0.0619	6e-04	409
Posi-Tred CR (TSL)	5.32	0.0117	24.9	2.45e-06	0.0604	0.000232	484
VaporControl 1P (TSL)	6.31	0.0159	29.8	3.05e-06	0.0743	0.00147	545
Vapor Control FC (TSL)	8.08	0.0219	36.4	4.05e-06	0.0964	0.001	707
Electro Flor ESD (TSL)	5	0.0109	21.6	2.32e-06	0.0618	0.000924	358
Electro Flor CD (TSL)	4.87	0.0112	21.6	2.42e-06	0.0622	0.000934	370
Quik-Glaze (TSL)	5.49	0.0145	21	2.72e-06	0.0564	0.000592	363

Aero Flor (TSL)	2.67	0.00726	12	1.18e-06	0.033	0.000488	192
HPT (TSL)	1.74	0.00375	8.15	6.69e-07	0.0219	0.000618	130

b) Inventory Metrics:

Indicator/LCI Metric	TPE	RE	NRE	NRR	RR	WDP	LFW	LFHW	bioC
Unit	MJ-Eq	MJ-Eq	MJ-Eq	kg	тз	тз	kg waste	kg waste	kg
Minimum	74.5	25.4	47.4	1.54	0.0018	0.0525	3.48	0.0001 24	0
Maximum	285	33	246	6.89	0.00213	0.165	22.3	0.00143	0
Mean	173	28.8	141	4.08	0.0019 5	0.108	11.9	0.0007 38	0
Median	164	28.9	132	3.93	0.0019	0.107	12.6	0.0007	0
Décor-Flor (MSL)	167	28	135	3.86	0.00193	0.107	12.6	0.0006 46	0
Posi-Tred SL (MSL)	190	29.8	157	4.45	0.0020	0.125	17.2	0.0008 49	0
Posi-Tred CR (MSL)	202	29.3	169	4.73	0.00197	0.118	15.8	0.0008 23	0
VaporControl 1P (MSL)	230	30	198	5.57	0.00193	0.134	17.3	0.0009 27	0
Vapor Control FC (MSL)	285	33	246	6.89	0.0020 7	0.165	22.3	0.00118	0
Electro Flor ESD (MSL)	161	28.2	129	3.78	0.00197	0.124	13.4	0.0013	0
Electro Flor CD (MSL)	163	29.5	131	3.86	0.0019 9	0.127	13.5	0.00143	0
Quik-Glaze (MSL)	162	28.4	130	4.01	0.00193	0.165	14.3	0.0007 45	0
Aero Flor (MSL)	99.3	26.6	70.3	2.2	0.0018 6	0.0752	6.6	0.0002 98	0
HPT (MSL)	74.5	25.5	47.6	1.55	0.0018 5	0.061	4.46	0.0001 58	0
Décor-Flor (TSL)	166	28.8	134	3.85	0.0019 9	0.0843	9.39	0.0004 45	0
Posi-Tred SL (TSL)	189	29	155	4.43	0.0019	0.0995	12.7	0.0006 16	0
Posi-Tred CR (TSL)	200	28.5	169	4.69	0.0019 5	0.0929	11.2	0.0006 5	0
VaporControl 1P (TSL)	230	30.5	196	5.52	0.0019 9	0.107	12.9	0.0007 15	0
Vapor Control FC (TSL)	282	32.5	243	6.87	0.00213	0.128	16.4	0.0008 85	0
Electro Flor ESD (TSL)	161	29	129	3.78	0.0019	0.0993	10.1	0.0010	0
Electro Flor CD (TSL)	163	28.6	131	3.86	0.0019 6	0.101	10.4	0.00115	0

Quik-Glaze (TSL)	161	29	129	4	0.0019 4	0.126	9.9	0.0005 58	0
Aero Flor (TSL)	99.1	25.9	70.2	2.19	0.0018 8	0.061	4.67	0.0002 27	0
HPT (TSL)	75.2	25.4	47.4	1.54	0.0018	0.0525	3.48	0.0001 24	0

Self Leveling

Table 15: Total life cycle (across modules in scope) impact results for Thin-Mil, assuming the geometric mean point values on a per 1 m2 of covered and protected flooring surface for a period of 60 years basis.

a) Midpoint Impact Categories:

Indicator/LCI Metric	AP	EP	GWP	ODP	PCOP	ADPe	ADPf
Unit	moles of H+-Eq	kg N	kg CO2- Eq	kg CFC- 11-Eq	kg NOx- Eq	kg Sb-Eq	MJ, net calorific value
Minimum	2.63	0.00672	12.2	1.41e-06	0.0328	0.000415	227
Maximum	3.54	0.00885	16.6	1.82e-06	0.0455	0.00056	308
Mean	3.08	0.00778	14.4	1.62e-06	0.0392	0.000488	268
Median	3.08	0.00778	14.4	1.62e-06	0.0392	0.000488	268
Posi-Tred O (MSL)	3.54	0.00885	16.6	1.82e-06	0.0455	0.00056	308
Posi-Tred O (TSL)	2.63	0.00672	12.2	1.41e-06	0.0328	0.000415	227

b) Inventory Metrics:

Indicator/LCI Metric	TPE	RE	NRE	NRR	RR	WDP	LFW	LFHW	bioC
Unit	MJ-Eq	MJ-Eq	MJ-Eq	kg	m3	m3	kg waste	kg waste	kg
Minimum	171	28	139	3.98	0.0018 9	0.0615	5.71	0.0003	0
Maximum	172	28.4	140	4	0.0019 5	0.075	7.46	0.0003 91	0
Mean	172	28.2	140	3.99	0.00192	0.0682	6.58	0.0003 47	0
Median	172	28.2	140	3.99	0.00192	0.0682	6.58	0.0003 47	0
Posi-Tred O (MSL)	171	28.4	140	4	0.0019 5	0.075	7.46	0.0003 91	0
Posi-Tred O (TSL)	172	28	139	3.98	0.0018 9	0.0615	5.71	0.0003	0

Mortar

Table 16: Total life cycle (across modules in scope) impact results for Thin-Mil, assuming the geometric mean point values on a per 1 m2 of covered and protected flooring surface for a period of 60 years basis.

a) Midpoint Impact Categories:

Indicator/LCI Metric	AP	EP	GWP	ODP	PCOP	ADPe	ADPf
Unit	moles of H+-Eq	kg N	kg CO2- Eq	kg CFC- 11-Eq	kg NOx- Eq	kg Sb-Eq	MJ, net calorific value
Minimum	5.31	0.00969	26.8	4.06e-06	0.071	0.000594	393
Maximum	17.8	0.0337	93.4	1.47e-05	0.233	0.00122	1310
Mean	11.6	0.0213	58.7	9.7e-06	0.152	0.000867	853
Median	11.2	0.0206	57.8	1.02e-05	0.151	0.000866	832
Terracolor (MSL)	16.5	0.0299	80.8	1.38e-05	0.213	0.000919	1210
Cheminert K (MSL)	17.8	0.0337	93.4	1.47e-05	0.233	0.00122	1310
Cheminert HD (MSL)	7.34	0.0132	35.6	5.21e-06	0.0923	0.000813	543
Terracolor (TSL)	9.34	0.0173	46.7	8.94e-06	0.127	0.000594	688
Cheminert K (TSL)	13.1	0.0238	69	1.15e-05	0.175	0.000987	975
Cheminert HD (TSL)	5.31	0.00969	26.8	4.06e-06	0.071	0.000668	393

b) Inventory Metrics:

Indicator/LCI Metric	TPE	RE	NRE	NRR	RR	WDP	LFW	LFHW	bioC
Unit	MJ-Eq	MJ-Eq	MJ-Eq	kg	тз	тз	kg waste	kg waste	kg
Minimum	282	30.2	246	6.79	0.0020	0.158	33.5	0.0021	0
Maximum	792	41.1	745	19.8	0.0023 6	0.486	131	0.0075 6	0
Mean	577	36.6	535	14.4	0.0022	0.331	81.1	0.0049 6	0
Median	664	38.6	622	16.6	0.0022 5	0.334	79.4	0.00512	0
Terracolor (MSL)	792	41.1	745	19.8	0.0022 6	0.46	116	0.0072	0
Cheminert K (MSL)	668	38.6	629	16.8	0.0022	0.486	131	0.0075 6	0
Cheminert HD (MSL)	285	30.2	250	6.86	0.0020	0.213	47.5	0.0026 4	0
Terracolor (TSL)	777	40.2	728	19.6	0.0023	0.291	65.1	0.0044 9	0
Cheminert K (TSL)	660	38.6	614	16.5	0.0023 6	0.376	93.7	0.0057 4	0
Cheminert HD (TSL)	282	31.1	246	6.79	0.0020	0.158	33.5	0.0021	0

Broadcast Slurry

Table 17: Total life cycle (across modules in scope) impact results for Thin-Mil, assuming the geometric mean point values on a per 1 m2 of covered and protected flooring surface for a period of 60 years basis.

a) Midpoint Impact Categories:

Indicator/LCI Metric	AP	EP	GWP	ODP	PCOP	ADPe	ADPf
Unit	moles of H+-Eq	kg N	kg CO2- Eq	kg CFC- 11-Eq	kg NOx- Eq	kg Sb-Eq	MJ, net calorific value
Minimum	8.8	0.0176	37.3	4.45e-06	0.103	0.00157	713
Maximum	29	0.0887	120	2.28e-05	0.337	0.00527	2360
Mean	18	0.0487	74.5	1.28e-05	0.207	0.00324	1440
Median	17	0.0442	70.4	1.2e-05	0.194	0.00306	1350
Cove Base Gel (MSL)	29	0.0887	120	2.28e-05	0.337	0.00527	2360
ElastaFlake RFS	12.4	0.024	51.3	5.61e-06	0.136	0.00191	952
(MSL)							
Cove Base Gel (TSL)	21.6	0.0644	89.5	1.84e-05	0.252	0.0042	1740
ElastaFlake RFS (TSL)	8.8	0.0176	37.3	4.45e-06	0.103	0.00157	713

b) Inventory Metrics:

Indicator/LCI Metric	TPE	RE	NRE	NRR	RR	WDP	LFW	LFHW	bioC
Unit	MJ-Eq	MJ-Eq	MJ-Eq	kg	тз	тз	kg waste	kg waste	kg
Minimum	480	36	441	12.6	0.00213	0.153	23.1	0.00137	0
Maximum	1110	66.2	1050	28.9	0.00312	0.367	58.6	0.0035 9	0
Mean	796	51.2	744	20.7	0.0026 4	0.25	39	0.0023 6	0
Median	796	51.2	742	20.7	0.0026 6	0.24	37	0.0022	0
Cove Base Gel (MSL)	1110	66.1	1050	28.9	0.0030	0.367	58.6	0.0035 9	0
ElastaFlake RFS (MSL)	482	36	443	12.6	0.0022 4	0.189	31	0.00172	0
Cove Base Gel (TSL)	1110	66.2	1040	28.8	0.00312	0.29	43.1	0.0027 6	0
ElastaFlake RFS (TSL)	480	36.4	441	12.6	0.00213	0.153	23.1	0.00137	0

ADDITIONAL ENVIRONMENTAL INFO -

No regulated substances of very high concern are utilized on site.

REFERENCES -

ISO Standards:

- ISO 6707-1: 2014 Buildings and Civil Engineering Works Vocabulary Part 1: General Terms
- ISO 14021:1999 Environmental Labels and Declarations Self-declared Environmental Claims (Type II Environmental Labeling)
- ISO 14025:2006 Environmental Labels and Declarations Type III Environmental Declarations Principles and Procedures
- ISO 14040:2006 Environmental Management Life Cycle Assessment Principles and Framework
- ISO 14044:2006 Environmental Management Life Cycle Assessment Requirements and Guidelines
- ISO 14067:2018 Greenhouse Gases Carbon Footprint of Products Requirements and Guidelines for Quantification
- ISO 14050:2009 Environmental Management Vocabulary
- ISO 21930:2017 Sustainability in Building Construction Environmental Declaration of Building Products

EN Standards:

- EN 16757 Sustainability of construction works Environmental product declarations Product Category Rules for concrete and concrete elements
- EN 15804 Sustainability of construction works Environmental product declarations -Core rules for the product category of construction products

Other References:

- NSF International (2018). Product Category Rule for Environmental Product Declarations PCR for Resinous Floor Coatings
- USGBC LEED v4 for Building Design and Construction, 11 Jan 2019 available at https://www.usgbc.org/resources/pcr-committee-process-resources-part-b
- USGBC PCR Committee Process & Resources: Part B, USGBC, 7 July 2017 available at https://www.usgbc.org/resources/pcr-committee-process-resources-part-b.
- US EPA (2020) Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/production/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf